Lovefield, a SQL database engine for the web

Published: February 27, 2017  •  Updated: November 16, 2017  •  database, google, ionic

In this post we have a closer look at Lovefield a SQL database engine for the web. Written in JavaScript the library works cross browser and provides an easy to use SQL like API for web applications. Lovefield is developed by Google and according to their documentation it is used in the products Inbox and Google Play Movies & TV. You find the source code of the library on GitHub:

The following video gives you a good overview of the library:

Another good source for learning Lovefield is this Codelab:


When an application wants to store data with Lovefield it has to define a schema. Like any SQL database Lovefield needs to know the tables, columns, constraints and indices before it can insert, query, update and delete data in the database. When you add Lovefield to your web application it exposes the global object lf which serves as the main entry point to the api. To create a schema an application has to call the lf.schema.create function.

const schemaBuilder = lf.schema.create('users', 1);

The first parameter specifies the name of the database and the second parameter the version number. Lovefield supports database upgrades and you need to increase this version number every time the schema changes. See more information about database upgrades in the official documentation.

With the schema object an application can define tables and columns. Like in a normal SQL database a table consists of columns and every column has a name and a data type assigned to it.

  addColumn('id', lf.Type.INTEGER).
  addColumn('username', lf.Type.STRING).
  addColumn('email', lf.Type.STRING).
  addColumn('note', lf.Type.STRING).
  addColumn('age', lf.Type.INTEGER).
  addColumn('active', lf.Type.BOOLEAN).
  addColumn('created', lf.Type.DATE_TIME).
  addPrimaryKey(['id'], true).
  addIndex('idxEmail', ['email'], false, lf.Order.ASC);

In addition to the data types we see in this example, Lovefield supports number, ArrayBuffer and any JavaScript object. See a detailed description of the data types in the documentation.

By default, columns added with addColumn are not nullable. If the applications needs to store null values into certain columns it needs to mark these columns with a call to addNullable as nullable. The note column in this example may contain null values.

The schema defines the column id as the primary key. The second parameter of the addPrimaryKey function specifies that the primary key is an autonumber field. When you want to use autonumbers the column needs to be of type integer. The number starts with 1 and will be incremented by 1 every time Lovefield inserts a new row. When the primary key is configured as autonumber you don't have to add the column in the insert statement.

Lovefield also supports indices. First parameter of the addIndex function assigns a name to the index, second parameter specifies the columns that are part of this index, the third parameter specifies if the index is unique and the last parameter sets the order of the index. An application can add multiple indices to a table.

Lovefield also supports foreign keys with the function addForeignKey and it is possible to add unique constraints with the addUnique function.

All schema related functions are synchronous operations and all the database operations like connecting, querying, updating, deleting are asynchronous and return a Promise.


With the schema object an application can open the database with the connect function.

let userDb;
let user;
  .then(db => {
    userDb = db;
    user = db.getSchema().table('User');

    return userDb.delete().from(user).exec();

Lovefield persists the data by default into IndexedDB. Alternatively an application can chose a memory back end which only stores the data in memory. Useful when you want to use the powerful query capabilities of Lovefield but don't have the requirement to persist the data. Third back end option is Firebase, which persists the data into a Firebase database.

To switch the storage provider the connect function accepts a JavaScript object as a parameter.

schemaBuilder.connect({storeType: lf.schema.DataStoreType.MEMORY}).....

schemaBuilder.connect({storeType: lf.schema.DataStoreType.FIREBASE, 
                       firebase: databaseRef}).....

If the Firebase option is chosen, the application must also supply the property firebase to provide an already connected and authenticated Firebase database reference.

The connect function returns a Promise with the database object. With that object the application gets access to the table with db.getSchema().table('User'). Then the code executes a delete statement to remove every row that is currently stored in the table.

Lovefield does not support SQL statements in string form like you would expect from a normal SQL database. An application has to create the query with the builder-pattern like API, but the result looks like very similar to SQL statements

SQL: delete from User
LoveField: userDb.delete().from(user).exec()


For inserting rows the application has to call the createRow function from the table schema object and provide the columns with their values as an JavaScript object. The keys of the object have to match the column names.

  const newRows = [];

  let row = user.createRow({
      username: 'john',
      email: '',
      age: 27,
      active: true,
      created: new Date()
      row = user.createRow({
      username: 'ralph',
      email: '',
      age: 32,
      active: true,
      created: new Date(),
      note: 'the admin'

  row = user.createRow({
      username: 'jodie',
      email: '',
      age: 23,
      active: false,
      created: new Date()

  return userDb.insertOrReplace().into(user).values(newRows).exec();

To insert rows an application calls either the insert or insertOrReplace function from the database object. insertOrReplace checks if the new row contains a value for the primary key and replaces the row with the same key in the table when it already exists. When the new row contains a primary key that is not already stored in the table or the row does not specify a key and the table utilizes a auto number primary key insertOrReplace inserts the row into the table.

Note: When the table did not specify a primary key in the schema an application cannot call insertOrReplace.

The function values expects an array of rows. Even when the application wants to insert only one row it has to wrap it in an array: values([row])


With a select query an application can retrieve data from a database. A SQL query like this select * from User looks very similar in Lovefield => .....)

Like all the other database operations selects are asynchronous and return a Promise. The Promise contains the selected rows as an array of objects. For example an application can access the id of the first row with this code rows[0].id.

Lovefield supports projections by specifying the columns as parameters of the select function. When you call select without any parameter Lovefield assumes a select * statement. The result of a select statement can be sorted with the orderBy clause.
      .orderBy(user.username, lf.Order.DESC)

//select username from User order by username DESC

Lovefield supports multiple orderBy statements.
      .orderBy(user.username, lf.Order.DESC)
//select username from User order by username DESC, id ASC

This statement first sorts the rows by username in descending order and when the username are equal it orders them by id in ascending order.

Search conditions are supported with the where function. A query that selects all active users would look like this
//select * from User where active = true

Lovefield supports the compare function as functions of the column object (e.g. You find a list of all the supported functions in the documentation.

To combine multiple predicates Lovefield provides the helper functions lf.op.and, lf.op.or and lf.op.not.
//select * from User where active = true AND age > 30

Lovefield includes support for groupBy and aggregate functions.

A query that calculates the average and number of rows, lf.fn.count(
//select avg(age), count(id) from User

Group by conditions are added to the query with the groupBy function.,
// select count(id), active from User group by active

Other features included in Lovefield are the limit and skip function to limit the returning rows and to skip a certain amount of rows (Documentation). Lovefield is also capable to execute queries with joins. See the documentation for more information.


Updates are executed with the update function

      .set(, true)
//update User set active = true where active = false

Note: Lovefield does not support update statements with calculated values: update User set age = age + 1


A debugging feature you find in SQL databases is the explain function. The database executes the query but instead of returning rows it gives back a detailed description how the engine processed the query. This is for example useful if you want to know if a query uses a index or not. To use explain in Lovefield replace the exec call with a call to explain.

const info1 =

const info2 =

The explain function returns a string containing the execution plan of the query. The output has to be read from bottom up. The first example uses a column in the where clause that is not covered by an index, therefore the database engine has to do a table scan and load the complete data into memory, then it processes the predicate and at the end it extracts the id and returns the result.
The second query executes an index scan because the schema defined an index for the column email. A index scan is much faster than a full table scan.

// info1
-select(value_pred(User.username eq john))

// info2
simple.html:125 project(
--index_range_scan(User.idxEmail, [,], natural)


With Lovefield it is possible to observe a select query for changes. An application can register a handler function to a select query which then gets called whenever the results of the given query is modified.

const query =;
userDb.observe(query, changes => console.log(changes));

The observer function is triggered every time the program inserts, updates or deletes rows into the User table

The argument (changes) the observe function receives is an array with objects that contain the same information as the callback function of an Array.observe() call.

For example an insert would result in a object that looks similar to this example:

  "object":[{"id":75,....},{"id":76,....},{"id":77,...},{"id":78,...},{"id":79,....},{"id":80, ....}],

Integrating Lovefield into an Ionic app

In this part we create an Ionic application and use Lovefield for storing and querying the data. The application imports a CSV file from the site that contains information of all earthquakes that happened world wide during the last 30 days. When I tested it there were over 7,500 entries in this file.

The app consists of a list that displays the selected earthquakes and a popover with a form where the user can set filter and sort criterias.

Demo App

We start developing the app with the Ionic CLI, add the PapaParse CSV library and the Lovefield library.

ionic start lovefieldapp blank
ionic g provider Earthquake

npm install papaparse
npm install @types/papaparse --save-dev

npm install lovefield

In the Earthquake provider class we add an init function that creates the database schema and imports the data from the usgs site. This init function is called from the ionViewDidLoad life cycle method in the HomePage.

  async init() {

    this.earthquakeDb = await this.schemaBuilder.connect();
    this.eqTbl = this.earthquakeDb.getSchema().table('Earthquakes');
    const result = await;

    if (result.length === 0) {
        return this.loadAndInsertData().toPromise();
    return Promise.resolve();


The code assigns the database instance (earthquakeDb) and a reference to the table (eqTbl) to instance variables so it has access to them in the other parts of the class. Before the app loads and inserts the data it executes a select query to check if there are already entries stored in the database. For this demo I only wanted to download and insert the file once. When the database is empty it calls the loadAndInsertData function that downloads the CSV file and imports the data into the database.

The createSchema function builds the schema with the database name earthquake and a table name Earthquakes.

createSchema() {
 this.schemaBuilder = lf.schema.create('earthquake', 1);

   .addColumn('time', lf.Type.DATE_TIME)
   .addColumn('latitude', lf.Type.NUMBER)
   .addColumn('longitude', lf.Type.NUMBER)
   .addColumn('depth', lf.Type.NUMBER)
   .addColumn('mag', lf.Type.NUMBER)
   .addColumn('magType', lf.Type.STRING)
   .addColumn('nst', lf.Type.INTEGER)
   .addColumn('gap', lf.Type.NUMBER)
   .addColumn('dmin', lf.Type.NUMBER)
   .addColumn('rms', lf.Type.NUMBER)
   .addColumn('net', lf.Type.STRING)
   .addColumn('id', lf.Type.STRING)
   .addColumn('updated', lf.Type.DATE_TIME)
   .addColumn('place', lf.Type.STRING)
   .addColumn('type', lf.Type.STRING)
   .addColumn('horizontalError', lf.Type.NUMBER)
   .addColumn('depthError', lf.Type.NUMBER)
   .addColumn('magError', lf.Type.NUMBER)
   .addColumn('magNst', lf.Type.INTEGER)
   .addColumn('status', lf.Type.STRING)
   .addColumn('locationSource', lf.Type.STRING)
   .addColumn('magSource', lf.Type.STRING)
   .addIndex('idxMag', ['mag'], false, lf.Order.DESC)
   .addIndex('idxDepth', ['depth'], false, lf.Order.DESC)
   .addIndex('idxTime', ['time'], false, lf.Order.DESC);


loadAndInsertData sends a http get request to the website and downloads the CSV file. It extracts the text of the response, parses it with the PapaParse library and then calls the insert function.

  loadAndInsertData() {
    return this.http.get(this.DATA_URL, {responseType: 'text'})
        map(data => Papa.parse(data, {header: true})),
        map(parsedData => this.insertData(parsedData))


The insertData function creates rows and calls the insertOrReplace function on the database object to insert all rows in one statement into the database.

insertData(parsedData): Promise<Array<Object>> {
 const rows = [];
 for (let parsedRow of {

   if (! {

   const row = this.eqTbl.createRow({
     time: new Date(parsedRow.time),
     latitude: Number(parsedRow.latitude),
     longitude: Number(parsedRow.longitude),
     depth: Number(parsedRow.depth),
     mag: Number(parsedRow.mag),
     magType: parsedRow.magType,
     nst: Number(parsedRow.nst),
     gap: Number(,
     dmin: Number(parsedRow.dmin),
     rms: Number(parsedRow.rms),
     updated: new Date(parsedRow.updated),
     type: parsedRow.type,
     locationSource: parsedRow.locationSource,
     magSource: parsedRow.magSource,
     horizontalError: Number(parsedRow.horizontalError),
     depthError: Number(parsedRow.depthError),
     magError: Number(parsedRow.magError),
     magNst: Number(parsedRow.magNst),
     status: parsedRow.status

 return this.earthquakeDb.insertOrReplace()


The GUI of the app is built with these files:
HomePage: TypeScript / Template
DetailComponent: TypeScript / Template
FilterPopover: TypeScript / Template

The home page displays the list of selected earthquakes. Because a normal list built with ion-list and ngFor was very slow with this huge amount of rows when I scrolled it, I had to use the virtual list feature from Ionic.

<ion-list [approxItemHeight]="'119px'" [virtualScroll]="earthquakes" [virtualTrackBy]="identify">
  <ion-item *virtualItem="let earthquake">
    <detail [earthquake]="earthquake"></detail>


This component does not render all items at once, instead it renders a small subset of the records to fill the viewport and then reuses the dom elements when the user scrolls.
When the user taps on the three dots in the top right corner, the filter is displayed as a popover.

presentPopover(event) {
 const popover = this.popoverCtrl.create(FilterPopover, {filter: this.filter});

   ev: event

 popover.onDidDismiss(filter => {
   if (filter) {
     this.filter = filter;


The FilterPopover is a form built with the template driven approach. When the user taps on the Apply button the popover is dismissed and the form values are sent back. The HomePage receives these values in the onDidDismiss function and calls the asynchronous select function in the EarthquakeService and assigns the result to the earthquakes instance variable. We need to do that inside a ngZone otherwise the display would not refresh.

execSelectQuery() {
 const start =; => {
   this.elapsedTime = - start; => this.earthquakes = rows);


The select function in the EarthquakeService class creates the select query and executes it.

select(filter: Filter) {

 const query =, this.eqTbl.mag, this.eqTbl.time,, this.eqTbl.depth)

 switch (filter.sort) {
   case 'time':
     query.orderBy(this.eqTbl.time, lf.Order.DESC);
   case 'mag':
     query.orderBy(this.eqTbl.mag, lf.Order.DESC);
   case 'depth':
     query.orderBy(this.eqTbl.depth, lf.Order.ASC);

 const whereClauses = [];
 if (!(filter.mag.lower === -1 && filter.mag.upper === 10)) {

 if (!(filter.depth.lower === -10 && filter.depth.upper === 800)) {

 if (filter.time != -1) {
   const now = new Date();
   now.setHours(now.getHours() - filter.time);

 if (whereClauses.length > 0) {

 return query.exec();


We only display a subset of the columns we store in the table, therefore we specify the columns we need for the view in the select function. Then the code specifies the orderBy statement according to the setting the user made on the filter page. Next it builds the where clause. Because it's not possible to call query.where multiple times the code adds all the where statements to the whereClauses array and then it combines them together with the and operator and calls where.


You find the entire source code of the app on GitHub.